Follow us...

 

Search News Archives

News Channels

 

Coronavirus (COVID-19)

 

 

View Channel

New Laboratory Products

 

View Channel

Lab News

 

View Channel

Research & Case Studies

 

View Channel

Microscopy | Image Analysis

 

View Channel

Separation Science

 

View Channel

Videos

 

View Channel

Events | Webinars

 

View Channel

Conferences | Events

Next-Generation Microscopy Image Analysis with Deep-Learning Technology

publication date: Apr 27, 2020
 | 
author/source: Olympus Europa Holding GmbH

nextgeneration-microscopy-image-analysis-deeplearning


Olympus cellSens imaging software improves the efficiency of your research with accurate object detection and segmentation.

Leveraging the power of deep learning, Olympus cellSens imaging software for microscopy offers significantly improved segmentation analysis, such as label-free nucleus detection and cell counting, for more accurate data and efficient experiments.

Image analysis is a critical part of many life science applications. Analyses that rely on segmentation to extract targets, such as cells and organelles, from the rest of the image are commonplace. However, conventional thresholding methods that depend on brightness and color can miss critical information or may not be able to detect the targets at all. cellSens software’s deep-learning technology enables users to quickly train the system to automatically capture this information, improving the speed and accuracy of label-free object detection, quantitative analysis of fluorescent-labeled cells and segmentation based on morphological features.

 

Improve Experiment Efficiency with Label-Free Nuclei Detection

The fluorescent staining and UV excitation required for conventional nucleus detection is time consuming and can damage the cells. However, cellSens software can identify and segment nuclei from simple transmission images so that fluorescent labeling is not required.


Reducing Phototoxicity During Fluorescence Imaging to Support Accurate Data Acquisition

With cellSens software’s deep-learning technology, users can get accurate analysis data from low signal-to-noise ratio images. The technology produces outstanding accuracy while significantly reducing the amount of excitation light the cells are exposed to. This enables high-resolution segmentation while helping keep the cells healthy.


Save Time by Automating Cell Counting and Measuring

Deep-learning technology saves time by identifying and counting mitotic cells automatically. This technology is also useful for segmenting images of tissue specimens, such as kidney glomeruli, which is challenging when using conventional methods.

 

learn more about cellSens imaging software

more news from Olympus



If you have not logged into the website then please enter your details below.



 

 

Popular this Month...

Our Top 10 most popular articles this month

 

Today's Picks...

 

 


 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd

 

 

 

Media Partners